Pages

Monday, 7 May 2018

Can Microbes Manipulate Our Minds?


             Can Microbes Manipulate Our Minds?



Summary

  Researchers report we may have evolved to depend on our gut bacteria to aid normal brain function, and changes in our microbiome could have effects on our behavior.
Source: University of Oxford.

  Researchers at the University of Oxford have proposed an evolutionary framework to understand why microbes living in the gut affect the brain and behavior, published in Nature Reviews Microbiology.

  Katerina Johnson (Department of Experimental Psychology) and Kevin Foster (Department of Zoology) assessed data from studies on the gut-brain axis to suggest how ‘that gut feeling’ evolved.

   Research has shown that gut bacteria (especially species belonging to Lactobacillus and Bifidobacterium) can influence social behavior, anxiety, stress and depressive-like behavior. Katerina explained: “We know there are numerous possible mechanisms, including communication via the vagus nerve (major nerve linking the gut and brain), the immune system and hormonal changes, as well as the production of neuroactive chemicals by gut microbes. But why should we expect gut bacteria to affect behavior at all?” In their paper, Johnson and Foster consider the evolutionary pressures that may have led to ‘that gut feeling’. 

   One theory gaining momentum is that members of the gut microbiome actively manipulate our behavior for their own benefit. For instance, gut bacteria might change our behavior in ways that make us more sociable to increase their likelihood of transmission to new hosts. Indeed, it is intriguing that numerous species of gut bacteria can produce chemicals of identical structure to our brain’s own neurotransmitters (or their precursors). However, in light of evolutionary theory, the authors suggest this scenario, that our brains are manipulated by our microbes, is very unlikely given the immense diversity of microbial species and strains inhabiting the gut.

   Professor Foster explained: ‘Any extra energetic cost invested by bacteria producing a neuroactive chemical to manipulate host behavior would make it very vulnerable to being outcompeted by other microbes not making this additional investment. The conditions favoring manipulation appear rarely satisfied by the genetically diverse ecosystem of the mammalian microbiome.’

   Katerina commented: ‘Rather than viewing our microbial companions as puppeteers manipulating our behavior, instead we suggest that the behavioral effects of gut microbes are more likely a result of natural selection on microbes to grow and compete in the gut, and natural selection on hosts to depend on their microbes. Microbial growth gives rise to metabolic by-products such as short-chain fatty acids known to affect brain function and microbial metabolites can also interact with our immune response.

 ‘In addition, our physiology may have adapted to make use of our associated microbes. Similar to the ‘hygiene hypothesis’, which posits that an absence of microbes impairs immune system development, we propose that we may have evolved to depend on our microbes for normal brain function, such that a change in our gut microbiome could have effects on behavior.’

   Johnson and Foster suggest that an understanding of the evolution of gut-brain communication may help us to effectively engineer this microbial ecosystem with potential benefits for mental health and well-being.


Source: E University of Oxford 
Publisher: Organized by NeuroscienceNews.com.
Image Source: NeuroscienceNews.com image is adapted from the University of Oxford news release.
Original Research: Abstract for “Why does the microbiome affect behavior?” by Katerina V.-A. Johnson & Kevin R. Foster in Nature Reviews Microbiology. Published April 24 2018.

Abstract
Why does the microbiome affect behavior?
Growing evidence indicates that the mammalian microbiome can affect behavior, and several symbionts even produce neurotransmitters. One common explanation for these observations is that symbionts have evolved to manipulate host behavior for their benefit. Here, we evaluate the manipulation hypothesis by applying evolutionary theory to recent work on the gut-brain axis. Although the theory predicts manipulation by symbionts under certain conditions, these appear rarely satisfied by the genetically diverse communities of the mammalian microbiome. Specifically, any symbiont investing its resources to manipulate host behavior is expected to be outcompeted within the microbiome by strains that do not manipulate and redirect their resources into growth and survival. Moreover, current data provide no clear evidence for manipulation. Instead, we show how behavioral effects can readily arise as a by-product of natural selection on microorganisms to grow within the host and natural selection on hosts to depend upon their symbionts. We argue that understanding why the microbiome influences behavior requires a focus on microbial ecology and local effects within the host.

1 comment: